3.403 \(\int \frac{(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=161 \[ \frac{2 \left (a^2 A+6 a b B+3 A b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a^2 A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2 \left (b^2 B-a (a B+2 A b)\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 b^2 B \sin (c+d x) \sqrt{\sec (c+d x)}}{d} \]

[Out]

(-2*(b^2*B - a*(2*A*b + a*B))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*(a^2*A +
 3*A*b^2 + 6*a*b*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*A*Sin[c +
d*x])/(3*d*Sqrt[Sec[c + d*x]]) + (2*b^2*B*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.247762, antiderivative size = 161, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {4024, 4047, 3771, 2641, 4046, 2639} \[ \frac{2 \left (a^2 A+6 a b B+3 A b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a^2 A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2 \left (b^2 B-a (a B+2 A b)\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 b^2 B \sin (c+d x) \sqrt{\sec (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(-2*(b^2*B - a*(2*A*b + a*B))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*(a^2*A +
 3*A*b^2 + 6*a*b*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a^2*A*Sin[c +
d*x])/(3*d*Sqrt[Sec[c + d*x]]) + (2*b^2*B*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d

Rule 4024

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2*(csc[(e_.) + (f_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[(a^2*A*Cos[e + f*x]*(d*Csc[e + f*x])^(n + 1))/(d*f*n), x] + Dist[1/(d*n), Int[(d
*Csc[e + f*x])^(n + 1)*(a*(2*A*b + a*B)*n + (2*a*b*B*n + A*(b^2*n + a^2*(n + 1)))*Csc[e + f*x] + b^2*B*n*Csc[e
 + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\frac{2 a^2 A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2}{3} \int \frac{-\frac{3}{2} a (2 A b+a B)+\left (A \left (-\frac{a^2}{2}-\frac{3 b^2}{2}\right )-3 a b B\right ) \sec (c+d x)-\frac{3}{2} b^2 B \sec ^2(c+d x)}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{2 a^2 A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}-\frac{2}{3} \int \frac{-\frac{3}{2} a (2 A b+a B)-\frac{3}{2} b^2 B \sec ^2(c+d x)}{\sqrt{\sec (c+d x)}} \, dx-\frac{1}{3} \left (-a^2 A-3 A b^2-6 a b B\right ) \int \sqrt{\sec (c+d x)} \, dx\\ &=\frac{2 a^2 A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 b^2 B \sqrt{\sec (c+d x)} \sin (c+d x)}{d}-\left (b^2 B-a (2 A b+a B)\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx-\frac{1}{3} \left (\left (-a^2 A-3 A b^2-6 a b B\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 \left (a^2 A+3 A b^2+6 a b B\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a^2 A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 b^2 B \sqrt{\sec (c+d x)} \sin (c+d x)}{d}-\left (\left (b^2 B-a (2 A b+a B)\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{2 \left (b^2 B-a (2 A b+a B)\right ) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{2 \left (a^2 A+3 A b^2+6 a b B\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{2 a^2 A \sin (c+d x)}{3 d \sqrt{\sec (c+d x)}}+\frac{2 b^2 B \sqrt{\sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [A]  time = 0.757449, size = 124, normalized size = 0.77 \[ \frac{\sqrt{\sec (c+d x)} \left (2 \left (a^2 A+6 a b B+3 A b^2\right ) \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+2 \sin (c+d x) \left (a^2 A \cos (c+d x)+3 b^2 B\right )+6 \left (a^2 B+2 a A b-b^2 B\right ) \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(6*(2*a*A*b + a^2*B - b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 2*(a^2*A + 3*A
*b^2 + 6*a*b*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + 2*(3*b^2*B + a^2*A*Cos[c + d*x])*Sin[c + d*x]))
/(3*d)

________________________________________________________________________________________

Maple [B]  time = 2.187, size = 404, normalized size = 2.5 \begin{align*} -{\frac{2}{3\,d} \left ( 4\,A{a}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+{a}^{2}A\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +3\,A{b}^{2}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -6\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab-2\,A{a}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+6\,Bab\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -3\,B\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}+3\,B\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{2}-6\,B{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x)

[Out]

-2/3*(4*A*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+a^2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)
^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2
-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-2*A*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+6*B*a*b*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2+3*B*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-6*B*b^2*cos(1/2*d*x+1/
2*c)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{B b^{2} \sec \left (d x + c\right )^{3} + A a^{2} +{\left (2 \, B a b + A b^{2}\right )} \sec \left (d x + c\right )^{2} +{\left (B a^{2} + 2 \, A a b\right )} \sec \left (d x + c\right )}{\sec \left (d x + c\right )^{\frac{3}{2}}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((B*b^2*sec(d*x + c)^3 + A*a^2 + (2*B*a*b + A*b^2)*sec(d*x + c)^2 + (B*a^2 + 2*A*a*b)*sec(d*x + c))/se
c(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )}\right ) \left (a + b \sec{\left (c + d x \right )}\right )^{2}}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**2*(A+B*sec(d*x+c))/sec(d*x+c)**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))**2/sec(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \sec \left (d x + c\right ) + A\right )}{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2/sec(d*x + c)^(3/2), x)